Neurociencia

Descubren la diferencias cerebrales que nos hacen únicos

La actividad eléctrica de las dendritas explica nuestra inteligencia

Una investigación desarrollada en el MIT ha descubierto que el ser humano es más inteligente que otros animales no porque tenga más neuronas o un córtex mayor, sino por la actividad eléctrica de las dendritas, que es la que marca la diferencia.

nvestigadores del MIT han descubierto la diferencia cerebral que nos hace únicos. Es gracias a la arquitectura de las terminales neuronales llamadas dendritas, que son las encargadas de recibir la información (impulsos nerviosos) procedentes de otras neuronas y de llevarla al centro metabólico (soma) de la neurona a la que pertenecen.

Gracias a este proceso neuronal podemos leer y comprender este artículo: las enormes redes de comunicación que establecen estas neuronas se comunican entre sí para generar nuestros pensamientos y comportamientos.

Analizando tejido cerebral humano vivo, estos investigadores observaron que cuando la información llega al extremo de una dendrita del cerebro humano, tiene que hacer un largo recorrido a través de los canales iónicos que sirven de soporte a la señal.

Esa distancia ocasiona que la señal recibida se debilite y que la intensidad de tráfico a lo largo de los canales iónicos también descienda, provocando una situación única: las diferentes dendritas tienen que decidir en cada momento qué hacer con la información que han recibido.

Es posible que a lo largo del recorrido de la señal la dendrita dispare una señal eléctrica o no y esa decisión es tomada colectivamente por un conjunto de dendritas. Eso obliga a las dendritas a desplegar una capacidad de cálculo que es el origen de la diferencia entre la inteligencia humana y la de otros animales, según los resultados de esta investigación.

Cerebro humano vivo

La investigación se desarrolló analizando en directo la actividad dendrítica en tejido cerebral vivo de seres humanos, obtenido como consecuencia de intervenciones quirúrgicas realizadas a pacientes con epilepsia.

Estas observaciones fueron comparadas con las efectuadas en cerebros de ratas para determinar si una distancia mayor para el recorrido de la señal alteraba significativamente su potencia.

Las dendritas humanas se han alargado en la misma medida en la que el cerebro humano ha evolucionado, por lo que las señales eléctricas tienen que viajar mucho más lejos para encontrar el soma de la neurona.

Por este motivo, una señal que procede de una dendrita es más débil que otra señal que proceda de cualquier otra parte de la neurona, al mismo tiempo que los canales por los que circula la información trabajan a una densidad menor que en otros animales.

Este cambio de densidad explica las diferencias entre la actividad eléctrica de las dendritas humanas y las de otros animales. Estas diferencias, según los investigadores, permiten que más regiones de una dendrita influyan en la fuerza de una señal eléctrica entrante, y por este motivo las neuronas individuales pueden realizar cálculos más complejos sobre la información, con la finalidad de decidir qué hacer con la señal que transportan (si disparar una señal eléctrica o no). De ello dependerá que se forme o no un pensamiento o adoptemos tal vez una decisión.

Cada neurona humana puede tener 50 dendritas y cada dendrita tiene cientos de sinapsis o puntos de conexión con otras neuronas. En comparación con los ratones, las dendritas de las neuronas humanas tienen menos canales iónicos.

Las dendritas que están en la corteza cerebral son mucho más largas que las de la mayoría de otras especies y es esta diferencia en la longitud de las dendritas la que nos hace finalmente más inteligentes que otros animales.

En resumen

Las características biofísicas de las neuronas dan forma al procesamiento de la información en el cerebro. Las neuronas corticales son más grandes en los humanos que en otras especies, pero no está claro cómo su tamaño afecta la integración sináptica. Aquí, realizamos grabaciones eléctricas directas de dendritas humanas e informamos una mejor compartimentación eléctrica en las neuronas piramidales de la capa 5. En comparación con las dendritas de rata, las dendritas distales humanas proporcionan una excitación limitada al soma, incluso en presencia de espigas dendríticas. Los somas humanos también exhiben menos estallido debido a la reducción del reclutamiento de la electrogénesis dendrítica. Finalmente, encontramos que la disminución de las densidades de los canales iónicos produce una mayor resistencia de entrada y subyace en el acoplamiento más bajo de las dendritas humanas. Llegamos a la conclusión de que la mayor longitud de las neuronas humanas altera sus propiedades de entrada-salida, lo que tendrá un impacto en el cálculo cortical.

Referenciahttps://www.cell.com

Compártelo en tus redes sociales
Share on Facebook
Facebook
Tweet about this on Twitter
Twitter
Share on LinkedIn
Linkedin

Deja un comentario

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.